

Bringing Space Down to Earth as a Service Utility

Eur Ing Dr Malcolm Macdonald

Created in-orbit infrastructure

- content creators were few
- users consumed content

Participation is now opening up, building on that infrastructure

- democratisation of access
- users generate content

Low cost, responsive space missions

- Spacecraft become interdependent & specialised
- Capabilities enhanced & augmented as required

Procure services or rent hardware while in orbit

• Navigation

Procure services or rent hardware while in orbit

- Navigation
 - Orbit determination & attitude determination
 - Timing signal

Procure services or rent hardware while in orbit

• Communications

Procure services or rent hardware while in orbit

- Communications
 - Limited visibility to ground stations
 - Continuous communication

Underpinning this future is networked systems

Including, swarming, constellations, & federated satellites

Nature is fallible

Engineering requires a robust, repeatable, verifiable and scalable behaviour

Ant Death Spiral, or Ant Mill

Army ants, which are blind, become detached from colony and begin to follow each others pheromone trail; strength of pheromone trail draws in other nearby ants. *Similar phenomena have been noted in processionary caterpillars and fish.*

Rapid Manoeuvring

Reaction to external stimuli analytically optimised by allocating resources within the network

Random network

For a simple 1D swarm, the time to transition to a commanded state is shown for an all-toall communication network (green), an analytically defined control matrix (red) and a numerically optimised control matrix (cyan)

0.9

0.8

allocation 6.0

Besonce 0.5

0.3

0.2

0.1

Allows engineered swarms to rapidly manoeuvre in similar fashion to flock of birds

Leader Selection

Identification of communities within the network

 Greater than order of magnitude reduction in computational effort compared to a genetic algorithm

Challenging conventional ideas & developing new concepts

Image Credit: NASA

Remote Passive MW Sensing with Cooperative NanoSats

Rapid repeat global coverage

- Spatial resolution of 10km 20km
- Average hourly revisit time at 40° latitude
- Data latency to user <1 hour on average

Instrument concept through to mission & system design, and concepts of operations

Resource Considerate Routing

Novel routing algorithms at the network layer

 Consideration of network bottlenecks to route around congestion

Cost savings through ground/space network reduction and/or performance enhancement

Agile Constellations

Developing agile and reactive space segments

Reconfigure and react to demand & opportunity

Space will be seamless from orbit to ground

Terrestrial concept of service utilities expands into orbit

University of **Strathclyde** Glasgow

The University of Strathclyde is a charitable body, registered in Scotland, with registration number SC015263

University of **Strathclyde** Glasgow

The University of Strathclyde is a charitable body, registered in Scotland, with registration number SC015263