

And yet, arguments about what this all means rage to this day

It is wrong to think that the task of physics is to find out how nature **is**. Physics only concerns what we can **find out** about nature.

> The job of physical theories is to approximate as closely as possible to the truth of **physical reality**.

Quantum technologies of the 21st century include quantum computing, quantum sensing, quantum cryptography and even quantum teleportation

Non-trivial quantum phenomena include:

- Long-lived quantum coherence
- Superposition
- Tunnelling
- Entanglement

Spherical

oblate

prolate

Entanglement

This is due to instantaneous connections between two or more quantum particles which can be very far apart.

The Einstein-Podolski-Rosen Paradox – 1935

The photons are entangled

An arbitrary distance apart

Article in Nature by Philip Ball (Nature 474 (2011) 272-274)

2015: The first book on the new field of quantum biology

Co-author, Johnjoe McFadden (professor of molecular genetics) So, when did I get involved?

BioSystems 50 (1999) 203-211

A quantum mechanical model of adaptive mutation

Johnjoe McFadden^{a,*}, Jim Al-Khalili^b

^a Molecular Microbiology Group, School of Biological Sciences, University of Surrey, Guildford, Surrey GU2 5XH, UK ^b Department of Physics, University of Surrey, Guildford, Surrey GU2 5XH UK

Received 10 August 1998; accepted 15 January 1999

Quantum superposition + Quantum entanglement = Schrodinger's cat

Candidates for quantum effects in biology

- 1. Enzyme action (confirmed in late 1980s)
- 2. Photosynthesis (well-established)
- 3. Magnetoreception in birds (leading candidate)
- 4. How we smell (gaining respectability)
- 5. DNA mutations (open question)

<u>Where are we today with quantum biology?</u>

- The field is still in its infancy it is still speculative;
- There is still widespread skepticism among biologists, mainly surrounding the 'so what" question;
- It does appear that certain mechanisms inside living cells require a helping hand from the quantum world;
- We have yet to understand *how* this is possible;
- Has Nature hit upon shortcuts that give it an advantage?
- Can we learn from nature to develop new or more efficient quantum devices?

Quantum biology

The first new science of the 21st century, quantum biology offers an opportunity to change the way we see the world.

Published: 22 December 2017

PRESS RELEASE

World's first training Centre for Quantum Biology established at the University of Surrey with £1m support from the Leverhulme Trust

The University of Surrey has been awarded £1million from the prestigious **Leverhulme Trust** to establish the world's first doctoral training centre for quantum biology.

And Andrewson a

If you are not astonished by quantum mechanics then you have not understood it!

